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Abstract

This document provides an English translation of the preface of “On the Addition
of Fractions” by Petri Mengoli. I also describe the context of the work, including
Archimedes’ Quadrature of the Parabola, Mengoli’s argument on the addition of frac-
tions, and the Basel problem.

1 Introduction

This document contains an English translation of the preface of “On the Addition of
Fractions” by Petri Mengoli. In this preface, Mengoli reflects on Archimedes’ Quadrature
of the Parabola and presents his argument on the addition of fractions. This leads to the
conclusion that the Harmonic series diverges, which is a well-known result in mathematics
today. The preface of this publication also contains a statement of what came to be known
as the Basel problem, which was solved by Leonhard Euler in the 18th century.

This document starts with some context on Archimedes’ Quadrature of the Parabola,
explores Petri Mengoli’s argument, and calls out the first instance of what came to be
known as the Basel problem.

I present the translation of Mengoli’s work as it was not easy or readily available to
find an English translation of this treatise that included the original statement of the Basel
Problem. Jordan Bell and Viktor Bl̊asjö have translated the core argument of Mengoli’s
work in their paper “Pietro Mengoli’s 1650 Proof that the Harmonic Series Diverges” [2],
but the statement of the Basel problem is not included in their translation. I hope this
document can serve as a reference for those interested in the history of mathematics and
the work of Petri Mengoli.

2 Archimedes’ Quadrature of the Parabola

The start of Petri Mengoli’s preface to his work “On the Addition of Fractions” is a
reflection on Archimedes’ Quadrature of the Parabola [1]. In this treatise, Archimede finds
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the area of a parabolic segment by dissecting the area into infinitely many triangles to form
a geometric progression.

If we take a parabola and have a chord pass through it, we can form a triangle within
the parabola with a given height h and width w. The remaining area of the parabolic
segment can also be dissected into two triangles, where the height of the triangle is h/4
and the width is w/2.

Figure 1: Archimedes’ Quadrature of the Parabola

If the area of the initial triangle is T , then the area of the each if the smaller two
triangles is T/8, and since there are two of them, the sum of the areas of the two smaller
triangles is T/4.

We can continue this process using the method of exhaustion to see that as this sequence
of triangles continues, we fill the area A:

A = T +
T

4
+

T

16
+

T

64
+ . . . (1)

Rearranging, the terms, we get:

A = T

(
1 +

1

4
+

1

16
+

1

64
+ . . .

)
(2)

And now we need only find what the sum of the geometric series converges to. Archimedes
takes a geometric approach to find the sum of the series:
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Figure 2: Archimedes’ Geometric Approach to the Sequence

Each blue area is one-fourth of the area of the previous square. And since the squares
are congruent to the two yellow squares next to it, the area the blue squares covers must
be one-third of the total area. Hence,

1

4
+

1

16
+

1

64
+ . . . =

1

3
(3)

From this, Archimedes concludes that the area of the parabolic segment is 4/3 times
the area of the triangle, since we have an additional 1 term in the original sum. Hence,

A =
4

3
T (4)

This is a remarkable result as it helps find the area of a parabolic segment without the
use of calculus. It also does not rely on any concept of limits, or infinite series, but rather
on the method of exhaustion to find the area of the parabolic segment.

3 Petri Mengoli’s Argument

Petri Mengoli’s work in “Novae quadraturae arithmeticae, seu De additione fractionum”
(New Arithmetic Quadratures, or on the Addition of Fractions) is a treatise on the addition
of fractions, in particular the harmonic series which in modern notation is:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . . (5)

Mengoli’s argument that the harmonic series diverges is the first known published proof
of this result[2].

The argument can be summarized as follows: take the harmonic series and group the
fractional terms, the first of which we look at is 1/2+1/3+1/4. Mengoli shows that these
three terms, when grouped, are greater than 1, which we can express more generally for
any three terms as,
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>
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n
(6)

He then notes that this is also true when grouping the next 9 terms, the next 27 terms,
the next 81 terms, and so on. Since we can always find another group of terms that sum
to a value greater than 1, we can always find sets of groups that will exceed some value S.
For example, we we assume that the harmonic series converges to 10, we can always find
11 groupings of terms using Mengoli’s method such that the sum of the groupings exceeds
10. This leads to the conclusion that the sum of the harmonic series can exceed any value
given a certain number of terms. Therefore, the harmonic series diverges.

The interesting part of Mengoli’s argument is that he uses a similar approach of the
method of exhaustion as Archimedes did in his Quadrature of the Parabola. This argu-
ment does not rely on the concept of limits, but rather on the properties of the fractions
themselves. For this reason, Mengoli titled his work “New Arithmetic Quadratures” as it
takes a similar approach to the methodologies of Archimedes, even though Mengoli does
not introduce any new quadratures in his work.

4 The Basel Problem

From his conclusions on the harmonic series, Mengoli acknowledges that finding the value
of the sum of the reciprocals of the squares “demands the assistance of greater ingenuity
so that the precise sum”[4] of the series may be found.

This is the first known statement of what came to be known as the Basel problem,
which is to find the value of the sum of the reciprocals of the squares:

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+

1

42
+ . . . (7)

The Basel problem was solved by Leonhard Euler in 1734 [3], who showed that the sum
of the reciprocals of the squares is π2/6, a result that came about from Euler comparing
two infinite expansions of the sine function: the Taylor series expansion and the product
expansion. The exact details of Euler’s proof are beyond the scope of this document, but
it is interesting to note that Mengoli’s work led to the statement of the Basel problem,
which was solved by Euler nearly a century later.

5 Preface of “On the Addition of Fractions” by Petri Men-
goli

The following translation is based on the original text of “Novae quadraturae arithmeticae,
seu De additione fractionum” by Petri Mengoli available via the Internet Archive[4].
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Meditanti mihi persæpe Archimedis parabo-
lae Quadraturam, propter quam infinita trian-
gula in continuâ quadrupla proportione existen-
tia certos limites quantitatis non excedunt; oc-
currit universalis illa Quadratura eiusdem argu-
menti occasione a Geometris demonstrata, qua
magnitudines infinitæ continuam quamlibet pro-
portionem maioris inaequalitatis possidentes in
finitias homogeneas quantitates colliguntur. Ad-
mirabile sane Theorema: cuius contemplatione
in eam quaestionem inductus sum, virum mag-
nitudines ea quacunq lege dispositæ, ut aliqua
possit assumi minor quolibet proposita, vel ut
deficientes in infinitum evanescant, infinita com-
posita omnem propositam quantitatem valeant
superare.

While meditating on Archimedes’ problem
of the Quadrature of the Parabola, because of
which infinite triangles arranged in continuous
quadruple proportion exist without exceeding cer-
tain limits of quantity, that universal Quadra-
ture of the same argument occurs on occasion
as pointed out by the geometers, where infinite
magnitudes possessing any continuous propor-
tion of greater inequality are collected into finite
homogeneous quantities. Truly an admirable the-
orem: by contemplating it, I was led into that
question concerning magnitudes, arranged accord-
ing to any given law, such that some may be as-
sumed smaller than any proposed value, or such
that those diminishing into infinity vanish, while
infinite compositions surpass every proposed quan-
tity.

In huiusmodi causae experimentum Arith-
meticas fractiones tentare agressus, eas ita dis-
posui, ut singulas unitates singulis post unitatem
numeris denominaram, in qua quidem disposi-
tione sumi potest magnitudo minor qualibet assig-
nata, & propterea ipsæ magnitudines ad ordi-
nis incrementum quantitate decrescentes in in-
finitum evanescunt.

In pursuit of an experiment concerning this
type of problem, I attempted arithmetic frac-
tions, arranging them such that each individ-
ual unit corresponds to each number following
unity fractions, in which arrangement it is pos-
sible to take a magnitude smaller than any as-
signed value, and therefore the magnitudes them-
selves decrease in quantity with the progression
of the order, vanishing into infinity.

1
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3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13

1

14
(8)

Causam igitur in assumptæ dispositionis ter-
minis proponens quærebam, utrum unitates de-
nominatæ singulis numeris post unitatem in in-
finitum dispositæ, & aggregatæ infinitam aliquam,
vel finitam compônerent extensionem. Pro finita
extensione respondendum videbatur; quod nu-
merorum, & fractionum contrariæ sint potestates,
numerorum quidem in multiplicatione, qua mag-
nitudines versus infinitum progrediuntur, frac-
tionum vero in divisione, qua res ad ipsa indivis-
ibilia reducitur: aggregati autem numeri super-
ant quamlibet propositam quantitatem; ergo à
contrario sensu aggregatæ fractiones non viden-
tur posse quamlibet propositam magnitudinem
excedere. Hoc sophisma toto ferè mense fuit
exspectationis nis argumentum, quod pro hac
parte Geometricam in causa ferre possem sen-

Therefore, proposing the cause within the
terms of the assumed arrangement, I was ques-
tioning whether the units assigned to each num-
ber after unity, arranged into infinity, and aggre-
gated, would form any infinite or finite extension.
It seemed necessary to respond in favor of a finite
extension; this is because the powers of numbers
and fractions are opposite: numbers, indeed, in
multiplication, by which magnitudes progress to-
ward infinity, but fractions in division, by which
the matter is reduced to indivisibles. Yet, the
aggregated numbers surpass any given quantity;
therefore, by contrary reasoning, it seems that
aggregated fractions cannot exceed any proposed
magnitude. This sophism occupied nearly an en-
tire month’s expectation of the argument, which
on this matter I could render in favor of the ge-
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tentiam: atqui dum processum demonstrationis
examino, judicium in alterius partis favorem con-
vertitur.

ometric cause. However, upon examining the
progression of the demonstration, my judgment
shifted in favor of the opposing side.

Ea est ratio, quia in propositis fractionibus
æquales magnitudines numeris Arithmetice dis-
positis denominantur, & propterea tres conse-
quentes, utpote A, B, C, sunt Harmonice dis-
positæ, &

The reason is as follows: in the proposed
fractions, equal magnitudes are denominated by
numbers arranged arithmetically. Therefore, the
three consecutive terms, namely A, B, and C, are
harmonically arranged, and

A B C

1

2

1

3

1

4

(9)

A, ad C, eandem habet proportionem, quam
excessus A, B, ad excessum B, C: est autem A,
maior C; ergo excessus A, B, maior est excessu
B, C; & aggregatum A, C, maius duplo B; &
aggregatum extremis A, B, C, maius triplo media
B.

the proportion of A to C is the same as the
proportion of the excess of A over B to the excess
of B over C. Furthermore, A is greater than C;
thus, the excess of A over B is greater than the
excess of B over C. Moreover, the sum of A and
C is greater than twice B, and the sum of the
extremes A, B, and C is greater than three times
the mean B.

Hoc igitur argumento fractiones in proposita
dispositione sumpta terna a prima sunt maiores
triplis mediis. Ergo fractiones propositæ dispo-
sitionis assumptæ totidem semper secundum nu-
meros proportionis continuæ subtriplicæ 3, 9, 27,
81, singulas unitates excedunt.

Therefore, by this argument the fractions taken
in the proposed arrangement in groups of three
starting from the first, are larger than three times
the mean. Therefore, the fractions of the pro-
posed arrangement, when taken in the same quan-
tity as the numbers of a continuous subtriplicate
proportion 3, 9, 27, 81, each exceed unity.

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13

1

14

1

15

1

16
(10)

Possunt autem sumi, pro quovis assignato
numero, totidem in continua proportione sub-
tripla numeri à ternario, iuxtà quorum aggrega-
tum sumptæ fractiones dispositionis propositæ
ipsum assignatam numerum superabut. Ergo
propositæ fractiones in infinitum dispositæ, &
aggregatæ infinitam extensionem valent implere.

Moreover, for any assigned number, one can
take the same number of terms in a continu-
ous subtriplicate proportion starting from three,
based on whose sum the taken fractions of the
proposed arrangement will exceed the assigned
number itself. Hence, the proposed fractions, ar-
ranged into infinity and summed, are capable of
filling an infinite extension.

Sit exempli gratia numerus assignatus 4: &
sumantur à ternario quatuor continuè propor-
tionales in subtripla 3, 9, 27, 81, quorum summa
120: igitur sumptæ fractiones in multitudine nu-
meri 120 superant assignatum numerum 4; nam
tres primæ superant triplum 1/3, videlicet uni-
tatem: novem deinceps superant triplum aggre-
gati 1

6 ,
1
9 ,

1
12 , videlicet aggregatum

1
2 ,

1
3 ,

1
4 ; sed

For example, let the assigned number be 4:
and from three, let four continuous proportions
in subtriplicate—3, 9, 27, 81—be taken, whose
sum is 120. Therefore, the fractions taken with
the quantity of number 120 exceed the assigned
number 4; for the first three exceed three times
1/3, that is, unity. The next nine exceed three
times the aggregate of 1

6 ,
1
9 ,

1
12 , that is, the ag-
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huiusmodi aggregatum superat unitatem, ut os-
tendi; ergo novem deinceps superant unitatem:
& propter eamdem demonstrationem 27, & 81
subsequentes singulas unitates excedunt.

gregate 1
2 ,

1
3 ,

1
4 ; but this kind of aggregate ex-

ceeds unity, as has been shown; thus, the next
nine exceed unity: and for the same reason of
the same demonstration, 27 and 81, following,
each exceed unity.

Hinc duo Corollaria processere. Primum; quod
eadem dispositio à quocunque ordinetur princi-
pio in infinitum extenditur; utpote si disposi-
tarum fractionum prima sit 1

5 , & alia deinceps
adhuc ipsam dispositionem propositum quemuis
numerum superare posse: finitum enim est ag-
gregatum ex iis, quæ sunt omissæ 1

2 ,
1
3 ,

1
4 , &

finiti ab infinito subtractiofinitum relinquere non
potest.

From this follow two corollaries. First, the
same arrangement, regardless of its starting point,
extends infinitely; for instance, if the first of the
arranged fractions is 1

5 , and the others there-
after still maintain the arrangement, any pro-
posed number can be surpassed: for the aggre-
gate of those omitted fractions (e.g., 1

2 ,
1
3 ,

1
5 )

is finite, and subtracting a finite quantity from
infinity cannot yield a finite result.

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13
& c. (11)

Alterum, quod infinitarum fractionum dis-
positio, in qua singulæ unitates à singulis nu-
meris Arithmetice proportionalibus denominan-
tur, pariter in infinitum extenditur. Fiat huius-
modi dispositio A, cuius primam fractionem de-
nominet numerus B, & excessus Arithmeticæ pro-
portionalium sit C, & sub singulis fractionibus
dispositionis A, ab eodem principio fiat dispo-
sitio D, fractionum, in quibus unitates denomi-
nantium omnibus numeris à B.

Second, the arrangement of infinite fractions,
in which each unit is denominated by numbers
proportionally arranged arithmetically, also ex-
tends infinitely. Let there be such an arrange-
ment A, whose first fraction is denominated by
the number B, and let the excess of its arith-
metic proportions be C. Under each fraction of
arrangement A, let there be arrangement D, start-
ing from the same point, of fractions in which the
units of the denominators are all numbers start-
ing from B.

A
1

2

1

5

1

8

1

11

1

14
B 2

D
1

2

1

3

1

4

1

5

1

6
C 3

(12)

Quia primi denominatores in dispositionibus
A, D, sunt æquales, alter minor est quam ut
ad alterum eandem habeat proportionem, quam
C, ad unitatem; & colligendo secundus in dis-
positione A, minor est quam ut ad secundum
in dispositione D, eandem habeat proportionem;
sunt autem fractiones eumdem habentes numera-
torem in reciproca proportione denominatorum;
ergo prima, secunda, & singulæ deinceps frac-
tiones dispositionis D, sunt minores quam ut ad
primem, secundam, & singulas deinceps disposi-
tionis A, eandem habeant proportionem, quam
C, ad unitatem; & colligendo, tota dispositio D,

Since the first denominators in the arrange-
ments A and D are equal, one is smaller than
what is required for the other to have the same
proportion as C to unity; and by comparing, the
second in arrangement A is smaller than what is
required for the second in arrangement D to have
the same proportion. The fractions, however,
have the same numerators in reciprocal propor-
tion to their denominators; therefore, the first,
second, and each successive fraction in arrange-
ment D are smaller than the corresponding first,
second, and successive fractions in arrangement
A, to have the same proportion as C to unity. By
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minor est quam ut ad totam dispositionem A,
eandem habeat proportionem, quam C, ad uni-
tatem.

summing, the entire arrangement D is smaller
than the entire arrangement A, having the same
proportion as C to unity.

Igitur si extensionis A, quantitas assignatur;
etiam eiusdem extensionis multiplam secundum
numerum C, quantitatem necesse est assignari,
qua infinita extensione D, sit maior; quod est
absurdum, Ergo extensio infinitarum fractionum
dispositionis A, est infinita.

Thus, if the quantity of extension A is as-
signed, it is also necessary to assign a multiple
of the same extension according to the number
C, with which the infinite extension D is greater,
which is absurd. Therefore, the extension of the
infinite fractions of arrangement A is infinite.

Dimissis igitur hisce dispositionibus quanti-
tatis iurisdictionem superantibus, eandem con-
templationem instituere cæpi de fractionibus, in
quibus unitates à numeris triangularibus denom-
inantur; an videlicet ipsæ etiam quadraturam ex-
cluderent, an potius paterentu:

Dismissing these arrangements, which exceed
the satisfaction of quantity, I began to apply the
same contemplation to fractions in which the
units are denominated by triangular numbers:
namely, whether these fractions would also ex-
clude quadrature or rather permit it.

Factis ergo de more calculis, & instructa demon-
stratione, inveni dispositionis huiusmodi quadrat-
uram esse unitatem:

Thus, after performing the usual calculations
and preparing a demonstration, I found that the
quadrature of such an arrangement is unity:

Units denominated by triangular numbers, which aggregated from the first are,

1

3

1

6

1

10

1

15

1

21

1

28

1

36
1

3

2

4

3

5

4

6

5

7

6

8

7

9

(13)

quòd aggregatæ quotlibet à prima sunt æquales
numero multitudinis ipsarum denominato per nu-
merum binario maiorem, & propterea semper uni-
tate sunt minores eo defectu, qui iuxtà multitu-
dinis additarum fractionum incrementum infra
quolibet assignatam magnitudine diminuitur, &
in infinitum evanescit.

The aggregates of any set taken from the first
are equal to the number of their denominators,
increased by one, divided by two, and therefore
are always less than unity by the defect that di-
minishes as the sum of added fractions increases
and vanishes into infinity.

Præterea in eadem dispositione binæ sumptæ
post unitatem singularum ab unitate sunt dimidiæ:

Moreover, in the same arrangement, any two
taken after unity are halves of the individual
terms from unity:

1

3

1

6

1

10

1

15

1

22

1

28

1

36

1

45
1

2

1

6

1

12

1

20

(14)

ergo dividendo, omnes post unitatem, unitati
sunt æquales.

therefore, by division, all those after unity
are equal to unity.

Tandem si eiusdem dispositionis fractiones
totidem sumantur deinceps secundum numeros
proportionis continuæ subduplæ à binario, videlicet
2, 4, 8, & c. Aggregatæ sunt in continuæ du-
plæ proportione; atqui magnitudines duplæ pro-

Finally, fractions of the same arrangement
are taken in the same quantity afterward, ac-
cording to the numbers of the continuously sub-
double proportion from two, namely 2, 4, 8, &
c. These are aggregated in a continuous dou-
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portionis aggregatæ infinitæ sunt æquales duplo
primæ, cum in nostro casu prima sit dimidium
unitatis, ergo propositæ fractiones aggregatæ in-
finitæ sunt æquales unitati.

ble proportion; and the magnitudes of the ag-
gregated infinite double proportions are equal to
twice the first, since in our case the first is half of
unity. Therefore, the proposed infinite fractions,
when aggregated, are equal to unity.

1

3

1

6

1

10

1

15

1

21

1

28

1

36

1

45

1

55

1

66

1

78

1

91

1

105

1

120
1

2

1

4

1

8

(15)

Huiusmodi sunt, quæ in primo præsentis opus-
culi libro demonstravi de fractionibus, in quibus
unitates denominantur planis omnium numero-
rum ab unitate: quia enim singuli trianguli nu-
meri singulorum huiusmodi planorum sunt dimidii,
propter reciprocam proportionem.

These are the kinds of concepts I demon-
strated in the first book of the present work,
regarding fractions in which units are denom-
inated by planes of all numbers starting from
unity. For indeed, the individual triangular num-
bers of these planes are halves, due to the recip-
rocal proportionem.

1 2 3 4 5 6 7 8 9
1
2

1
6

1
12

1
20

1
30

1
42

1
56

1
72

1 1
3

1
6

1
10

1
15

1
21

1
28

1
36

Singulæ fractiones, in quibus unitates denom-
inantur triangulis duplæ sunt singularum, in quibus
denominantur planis; & ideò utrique dispositioni
eadem conveniunt demonstrationes.

Each fraction, in which the units are denom-
inated by triangular numbers, is double that of
each corresponding fraction denominated by planes;
and therefore, the same demonstrations apply to
both arrangements.

Ab huius fractionum dispositionis contem-
platione feliciter expeditus, ad aliam progrediebar
dispositionem, in qua singulæ unitates numeris
quadratis denominantur. Hæc speculatio fruc-
tus quidem laboris rependit, nondum tamen ef-
fecta est solvendo, sed ingenii ditioris postulat
adminiculum, ut præcisam dispositionis, quam
mihimetipst proposui, summam valeat reportare.

Having successfully concluded my contem-
plation of this arrangement of fractions, I pro-
ceeded to another arrangement, in which each
unit is denominated by square numbers. This
speculation indeed rewards labor with fruit, but
it has not yet been completed in solving and de-
mands the assistance of greater ingenuity so that
the precise sum of the arrangement I proposed
to myself may be recovered.

We conclude our translation of the preface here.

6 Conclusion

In this document, we have discussed the work of Petri Mengoli in his treatise “Novae
quadraturae arithmeticae, seu De additione fractionum” (New Arithmetic Quadratures, or
on the Addition of Fractions). Mengoli’s work on the harmonic series is the first known
published proof that the harmonic series diverges. His work on the addition of fractions
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led to the statement of the Basel problem, which was solved by Leonhard Euler nearly a
century later.

Mengoli’s work is significant as it uses a similar approach to the methodologies of
Archimedes, relying on the properties of the fractions themselves rather than the con-
cept of limits. The translation of the preface of Mengoli’s work provides insight into his
methodology and his reasoning behind his work on the addition of fractions.
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